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Research Project Overview

« Developing signal control strategies for autonomous,
connected, and conventional vehicles

* Funding from NSF ($1.3M) and FDOT ($392K)
* Developing simulation environment (VISSIM)
* Timeframe: 2.5 years completed/ 4 years total

 Planning field testing in Gainesville/UF as part of the I-
STREET testbed
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Research Objectives

* Develop novel optimization
algorithms for AV trajectories
and signal control

 Consider Connected Vehicles
(CV) and conventional vehicles
and their effects on optimal
trajectories and control

* Develop simulation environment
for testing

« Develop novel sensors and data
fusion algorithms to implement
our algorithms in mixed traffic

* Implement the algorithm at an
intersection in the field
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Intelligent Intersection Control System
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Optimal AV Trajectory Determination

« Optimization
determines three/
four component
trajectories for AV

* Need to have Y
destination, which TS G s ot
affects speed

Time
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Optimization for AV Only
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Optimization Horizon Scheme
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Average Travel Time Delay
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Comparisons — Unbalanced Demand
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Effects of Communication Range
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Considerations for Field Implementation
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Optimization for Mixed Traffic

« Need to have conventional signalization
« Need to account for conventional vehicle movement
* Assumed Gipps car following for conventional vehicles
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Saturation Headway = 1.0 sec Saturation Headway = 1.5 sec Saturation Headway = 2.0 sec Comm Range (feet)
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» Higher AV % results in lower delays

* Min. saturation headway significantly affects travel time

 Communication range does not significantly affect delay

» Higher flow rates result in lower effective greens, with frequent switching
between phases
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Saturation Headway = 1.0 sec
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» |ICS is most effective for higher flows and lower saturation headways
» 1ICS results in higher average effective greens, since it prevents gap outs.
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Transition To Practlce Initial Testing

e Initial testing in
Gainesville and TERL
in Tallahassee

e DSRC communication
established - one
“suitcase” at UF and
three more at FDOT/
TERL

« Completed fusion for @
radar & DSRC, now
adding video
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Next Steps

* Transitioning code to Python to enhance speed and
prepare it for field implementation

» Adjustments planned for consideration of
pedestrians and bicycles

« Optimization will consider cycle failures
* New optimization will interact with VISSIM

» Developing fusion approach for multiple inputs
(radar, video, DSRC) to determine location/speed
of conventional vehicles and pedestrians/bicyclists

» Continuing field tests at Gainesville intersection
for radar, DSRC, video
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Questions?
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